Delayed Gradient Averaging: Tolerate the Communication Latency for Federated Learning

Ligeng Zhu, Hongzhou Lin, Yao Lu*, Yujun Lin, Song Han

Massachusetts Institute of Technology, Google*

Federated Learning Allows Training without Sharing

 Security: Data never leaves devices thus promises security and regularization.

 Customization: Models continually adapt to new data from the sensors.

Difference between Distributed Training and Federated Learning

Connected through wired ethernet or infinity band Bandwidth as high as 100Gb/s, Latency as low as 1us

Connected through WiFi or Cellular network Bandwidth up to 1Gb/s, Latency ~200ms.

There is huge gap between the network connection of conventional distributed training and federated learning

Network Bottleneck in Federated Learning

- Bandwidth can be always improved by
 - Hardware upgrade
 - Gradient compression[1] and quantization[2]

- Latency is hard to improve because
 - Physical limits: Shanghai to Boston, even considering the speed of light, still takes 162ms.
 - Signal congestion: Urban office and home creates a lot of signal contention.

^{[2] 1-}Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs

In cluster network latency does not affect training

In home wireless connection slows the training by certain margin.

Long-distance connection slows the training by a large margin.

Can existing distributed optimizations handle high latency?

Conventional Algorithms Suffer from High Latency

Distributed Synchronous SGD

- 1. Sample and calculate $\nabla w_{(i,j)}$
- 2. Send $\nabla w_{(i,j)}$ to other nodes
- 3. Recv $\nabla w_{(i,j)}$ from other nodes

4.
$$\overline{\nabla w_{(i)}} = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i,j)}$$
5. $w_{(i,j)} = w_{(i,j)} - \eta \overline{\nabla w_{(i)}}$

5.
$$w_{(i,j)} = w_{(i,j)} - \eta \overline{\nabla w_{(i)}}$$

Local updates and communication are performed sequentially. Worker has to wait the transmission finish before next step.

Conventional Algorithms Suffer from High Latency

Federated Averaging [McMahan 16]

- 1. Sample and calculate $\nabla w_{(i,i)}$
- 2. If *i* mod K:
 - 1. Send $\nabla w_{(i,j)}$ to other nodes
 - 2. Recv $\nabla w_{(i,j)}$ from other nodes

3.
$$G_i = \frac{1}{J} \sum_{i=1}^{J} \nabla w_{(i,j)}$$

1.
$$G_i = \nabla w_{(i,j)}$$

1.
$$G_i = \nabla w_{(i,j)}$$

4. $w_{(i,j)} = w_{(i,j)} - \eta G_i$

Increase K (K=2 in the example) can <u>amortize the effect</u>, but the training still slows when latency is high.

Conventional Algorithms Suffer from High Latency

Federated Averaging [McMahan 16]

1.
$$\nabla w_{(i,j)} = \frac{\partial F(x_{(i,j)}, y_{(i,j)}; w)}{\partial w}$$

2. If *i* mod K:

How to improve training throughput under high latency?

Pipeline computation and communication!

3. Else

1.
$$G_i = \nabla w_{(i,j)}$$

4.
$$w_{(i,j)} = w_{(i,j)} - \eta G_i$$

Increase *K* can amortize the effect, but still, the training suffers from high latency.

Communication

Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

- 1. Sample and calculate $\nabla w_{(i,j)}$
- 2. If i mod K == 0
 - 1. Send fresh $\nabla w_{(i,j)}$ to other nodes
- 3. If i mod K == D

- 1. Delay the averaging to a later iteration.
- 1. Recv stale $\nabla w_{(i-D,j)}$ from other nodes

2.
$$\overline{\nabla w_{(i-D)}} = \frac{1}{J} \sum_{i=1}^{J} \nabla w_{(i-D,j)}$$

4.
$$W_{(i,j)} = W_{(i,j)} - \eta (\nabla W_{(i,j)} - \nabla W_{(i-D,j)} + \overline{\nabla W_{(i-D)}})$$

2. Correction term to compensate the accuracy.

Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

- 1. Sample and calculate $\nabla w_{(i,i)}$
- 2. If i mod K == 0
 - 1. Send fresh $\nabla w_{(i,j)}$ to other nodes
- 3. If $i \mod K == D$

lacksquare Delay D steps

1. Recv stale $\nabla w_{(i-D,j)}$ from other nodes

2.
$$\overline{\nabla w_{(i-D)}} = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i-D,j)}$$

4.
$$w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \overline{\nabla w_{(i-D)}})$$

W/o delay: all the local machines are blocked to wait for the synchronization to finish

With delay: Worker keep performing local updates while the parameters are in transmission.

Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

- 1. Sample and calculate $\nabla w_{(i,i)}$
- 2. If i mod K == 0
 - 1. Send fresh $\nabla w_{(i,j)}$ to other nodes
- 3. If $i \mod K == D$

lacksquare Delay D steps

1. Recv stale $\nabla w_{(i-D,j)}$ from other nodes

2.
$$\overline{\nabla w_{(i-D)}} = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i-D,j)}$$

4.
$$w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \overline{\nabla w_{(i-D)}})$$

Communication is covered by computation.

As long as the transmission finishes within $D \times T_{\text{computation}}$ the training will not be blocked.

Consider the 3rd iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta \left(\nabla w_{(1,j)} + \nabla w_{(2,j)} + \nabla w_{(3,j)} \right)$$

Local gradients

Consider the 3rd iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta(\nabla w_{(1,j)} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

Consider the 3rd iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta(\nabla w_{(1,j)} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

$$\overline{\nabla \mathbf{w}_{(1)}}$$

Consider the 3rd iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

Replacing oldest local gradients with global averaged ones!

Consider the 4th iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

$$w_{(4,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)} + \nabla w_{(4,j)})$$

Consider the 4th iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

$$w_{(4,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)} + \nabla w_{(4,j)})$$

$$\overline{\nabla w_{(2)}}$$

Current local gradients Stale global gradients $w_{(i,j)} = w_{(i,j)} - \eta(\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \overline{\nabla w_{(i-D)}})$ Stale local gradients

Consider the 4th iteration with D = 2

$$w_{(3,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

$$w_{(4,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \overline{\nabla w_{(2)}} + \nabla w_{(3,j)} + \nabla w_{(4,j)})$$

Current local gradients Stale global gradients
$$w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \overline{\nabla w_{(i-D)}})$$
 Stale local gradients

$$w_{(3,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)})$$

$$w_{(4,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \overline{\nabla w_{(2)}} + \nabla w_{(3,j)} + \nabla w_{(4,j)})$$

$$w_{(i,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \dots + \overline{\nabla w_{(i-D,j)}} + \overline{\nabla w_{(i-D+1,j)}} + \dots + \overline{\nabla w_{(i,j)}})$$
Only most recent D updates are local gradients.

Our DGA:

$$w_{(i,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \ldots + \overline{\nabla w_{(i-D,j)}} + \overline{\nabla w_{(i-D+1,j)}} + \ldots + \overline{\nabla w_{(i,j)}}$$

The divergence is bounded.

Vanilla Distributed SGD:

$$w_{(i,j)} = w_{(1,j)} - \eta(\overline{\nabla w_{(1)}} + \ldots + \overline{\nabla w_{(i-D,j)}} + \overline{\nabla w_{(i-D+1)}} + \ldots + \overline{\nabla w_{(i)}})$$

Usual training consists of >10k iterations, such divergence is small.

DGA Guarantees the Convergence

• Assumption 1: the loss function F(w; x, y) is **Lipchitz smooth**

$$\nabla f_i(x) - \nabla f_i(y) \mid | \leq L \mid |x - y| \mid . \quad \forall x, y \in \mathbb{R}^d$$

Assumption 2: Bounded gradients and variances

$$\mathbb{E}_{\zeta_i} || \nabla F_j(w; \zeta_i) ||^2 \leq G^2, \forall w, \forall j, \mathbb{E}_{\zeta_i} || \nabla F_j(w; \zeta_j) - \nabla f_j(w) ||^2 \leq \sigma^2, \forall w, \forall j.$$

The convergence rate of DGA is
$$O(\frac{\Delta + \sigma^2}{\sqrt{JN}} + \frac{Jd^2}{N})$$
 (details in paper)

When $D < O(N^{\frac{1}{4}}J^{-\frac{3}{4}})$, DGA converges as fast as original SGD which is $O(\frac{\Delta + \sigma^2}{2})$.

	Paritions FedAvg(k=5)			FedAvg(k=10)		FedAvg(k=20)		DGA(K=5,D=20)	
CIFAR	I.I.D	88.7	1.0x	88.5	- 1.51x	88.1	2 05v	88.6	3.16x
	Non-I.I.D	48.2		47.2		43.9	2.05x	48.0	

	Paritions FedAvg(k=5)			FedAvg(k=10)		FedAvg(k=20)	DGA(K=5,D=20	DGA(K=5,D=20)	
CIFAR	I.I.D	88.7	1.0x	88.5	1 51	88.1	88.6	3.16x	
	Non-I.I.D	48.2		47.2	1.51x	43.9	48.0		

	Paritions FedAvg(k=5)			FedAvg(k=10)		FedAvg(k=20)		DGA(K=5,D=20)	
CIFAR	I.I.D	88.7	1.0%	88.5	1 51	88.1	2.05	88.6	3.16x
	Non-I.I.D	48.2	1.0x	47.2	1.51x	43.9	2.05x	48.0	

While producing higher accuracy, DGA also demonstrates faster training speed as it fully covers communication with computation.

	Paritions	ns FedAvg(k=5)		FedAvg(k=10)		FedAvg(k=20)		DGA(K=5,D=20)	
CIFAR	I.I.D	88.7	1.0x	88.5	- 1.51x	88.1	2.05x	88.6	3.16x
	Non-I.I.D	48.2		47.2		43.9		48.0	
	I.I.D	76.6	4 0	76.5	1.43x	76.2	4 04 1	76.4	2.55x
ImageNet	Non-I.I.D	55.4	1.0x	52.5		48.6	1.81x	54.9	

	Paritions	FedAvg(k=5)		FedAvg(k=	FedAvg(k=10)		FedAvg(k=20)		DGA(K=5,D=20)	
	I.I.D	88.7	1 0 4	88.5	1 51	88.1	2.05	88.6	2 16v	
CIFAR	Non-I.I.D 48.2 47.2 43.9 48.0	3.16x								
ImageNet	I.I.D	76.6	1.0x	76.5	1 12 1	76.2	1.81x	76.4	2 55v	
	Non-I.I.D	55.4		52.5	1.43x	48.6		54.9	2.55x	
	I.I.D	47.6	4.0	47.3	1 66%	47.3	2 51	47.1	4.07	
Shakespeare	Non-I.I.D	36.9	1.0x	34.3	1.66x	30.1	2.51x	36.3	4.07x	

Real-world Benchmark

We build a raspberry pi cluster to simulate real-world federated learning scenarios.

- Device: 8 x Raspberry Pi 4B+ Models
- Device OS: Debian 10
- Router: Netgear R6300v2
- Router OS: OpenWRT

Benchmark on Raspberry Pi Farms

When scaling the training to two devices, the normalized throughput is only 0.6, which is even slower than single device.

Benchmark on Raspberry Pi Farms

Even we set a larger value of K, the scalability is still less than 0.5 and not comparable with training throughput based on in-cluster networks.

Benchmark on Raspberry Pi Farms

Our proposed DGA demonstrates ideal scalability under high-latency network. The speedup on eight-device is about 7.1, which close to what conventional algorithms achieved inside a data center.

Thanks for listening!

We design Delayed Gradient Averaging (DGA) that

- Delays averaging to a later iteration to tolerate high network latency
- New update formula to compensate the accuracy

We evaluate the algorithm's

- Convergence and accuracy both theoretically and empirically.
- Training throughput under a real-world pi-cluster.

