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Federated Learning Allows Training without Sharing

M
~ Deliver model weights '
+J a 1 N
.||||||||I||. New and Sensitive Data
——
Upload model updates
User's data Intelligent Edge Devices Cloud Server
- Security: Data never leaves - Customization: Models
devices thus promises continually adapt to new
security and regularization. data from the sensors.
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Difference between Distributed Training
and Federated Learning

4G/5G

)
D L

Connected through wired ethernet or infinity band Connected through WiFi or Cellular network
Bandwidth as high as 100Gb/s, Latency as low as 1us Bandwidth up to 1Gb/s, Latency ~200ms.
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There is huge gap between the network connection
of conventional distributed training and federated learning
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Network Bottleneck in Federated Learning

« Bandwidth can be always improved by
Hardware upgrade

= |
Gradient compression[1] and quantization[2] R .
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[1] Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
[2] 1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs

» Latency is hard to improve because
* Physical limits: Shanghai to Boston, even considering
the speed of light, still takes 162ms.
» Signal congestion: Urban office and home creates a
lot of signal contention.
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High Latency Slows Federated Learning
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High Latency Slows Federated Learning
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Within a Rack Same Data Center
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- In cluster network latency does not affect trainin .
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High Latency Slows Federated Learning
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- In home wireless connection slows the training by certain margin. -
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High Latency Slows Federated Learning

— : PN
Within a Rack Same Data Center Wireless Across the World
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- Long-distance connection slows the training by a large marqin. -
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Can existing distributed optimizations handle high latency?

NO
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1.
2.
3.

Conventional Algorithms Suffer from High Latency

Distributed Synchronous SGD

Latency increases

Sample and calculate Vw; ;

Send Vw; ; to other nodes

Recv Vw; ;) from other nodes

1 J
VW) = 7 Z VWi
=1

= — Local updates and communication are performed sequentially.
W) = Waj) =1V W) P p : y

Worker has to wait the transmission finish before next step.

™ Computation Communication

1: iteration, j: work index, x: training data, w: model weights
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Conventional Algorithms Suffer from High Latency

Federated Averaging [McMahan 106]

1. Sample and calculate Vw,;

Latency increases

2. If 1 mod K:

1. Send Vwj; ; to other nodes

2. Recv Vw; ; from other nodes

1
3. G.=— Vw,..

3. Else | _
Increase K (K=2 in the example) can amortize the effect,

1. G; = Vw, ; but the training still slows when latency is high.
4. Wi j = Wiy —nG;

™ Computation Communication
|||i|- 1 iteration, j: work index, x: training data, w: model weights IIII.\N I_I.\I: N



How to improve training throughput under high latency?

Pipeline computation and communication!
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Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

1. Sample and calculate Vw; 5,

2. IfimodK ==
3. If imod K== 1. Delay the averaging to a later iteration.

2. Correction term to compensate the accuracy.

I|Ii|- 1 iteration, J: work index, x: training data, w: model weights IIII.\N I_I.\I: i



Delayed Gradient Averaging

Delay Gradient Averaging [Ours] Send and recv params
1. Sample and calculate Vw(i,j)
2. IfimodK ==

W/o delay: all the local machines are blocked to

walt for the synchronization to finish
1. Send fresh Vw; ; to other nodes

3. If imod K==

Delay D steps
1. Recv stale Vw,_, ; from other nodes

1 J Send and recv params
2. VW(i—D) — 7 Z VW(i—D,j)

OO

4 W(i,j) — W(l,])—ﬂ(VW(l,]) — VW(i—D,j) + VW(Z_D))

With delay: Worker keep performing local
updates while the parameters are in transmission.

||||| 1 iteration, J: work index, x: training data, w: model weights IIII\N I_I\ 14



Delayed Gradient Averaging

Communication is covered by computation.

Delay Gradient Averaging [Ours]

1. Sample and calculate Vw; ;,

2. Ifimod K == Latency increases

1. Send fresh Vw,; ., to other nodes

- 17
3. If imod K== Delay D steps

S -

1 J
j=1

4. W(i,j) — W(l,])_;/](vw(l,]) _ V‘/V(i—D,j) LA Vw(i—D))

As long as the transmission

the training will not be blocked.

™ Computation Communication
|||i|- 1 iteration, j: work index, x: training data, w: model weights IIII.\N I_I.\I: .



The Design of Correction Term

Current local gradients Stale global gradients

V v

Wiy = Wiy~ NV Wi ) — VW(iE‘D,j) + VWi_p))

Stale local gradients

Consider the 3rd iteration with D = 2

Waj) = Way —m(Vwa )+ Vwe )+ Vg

Local gradients
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The Design of Correction Term

Current local gradients Stale global gradients

V v

Wiij) = Wy VW(i,j+ VWi-n)

Stale local gradients

Consider the 3rd iteration with D = 2

Waj) = Wayjy — 1) + Ve ) + Vg )

i IIAN LLAla



The Design of Correction Term

Current local gradients Stale global gradients
W) = Wiy =1V Wiy = VWi,

)

Stale local gradients

Consider the 3rd iteration with D = 2

Waj) = Wayjy — 1) + Ve ) + Vg )

Vw(l)
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The Design of Correction Term

Current local gradients Stale global gradients

V v

Wiy = Wiy~ NV Wi ) — VW(iE‘D,j) + VWi_p))

Stale local gradients

Consider the 3rd iteration with D = 2

Waj) = Wa) — N1V Wy + Vg ;) + Vg )

Replacing oldest local gradients with global averaged ones!
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The Design of Correction Term

Current local gradients Stale global gradients

V v

Wiij) = Wy VW(i,j+ VWi-n)

Stale local gradients

Consider the 4th iteration with D = 2

Waj) = Wa) — N1V Wy + Vg ;) + Vg )

W = Wa,y — 1V, +% + Vwa )+ Vg )
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The Design of Correction Term

Current local gradients Stale global gradients
W) = Wiy =1V Wiy = VWi,

)

Stale local gradients

Consider the 4th iteration with D = 2

Waj) = Wa) — N1V Wy + Vg ;) + Vg )

W = Wa,y — 1V, +% + Vwa )+ Vg )

V W2,
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The Design of Correction Term

Current local gradients Stale global gradients
W) = Wiy =MV Wiy = VWipjy + VWi-p))

)

Stale local gradients

Consider the 4th iteration with D = 2

Waj) = Wa) — N1V Wy + Vg ;) + Vg )

Waj) = Wa ) — N1V Way + Vg + Vg ;) + Vg ;)
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The Design of Correction Term

Current local gradients Stale global gradients
W) = Wiy =MV Wiy = VWipjy + VWi-p))

)

Stale local gradients

Wiy =Wan— (VW + Vwe o+ Vwes
(3. (1) — 1 ( (1) (2.) (3’])) Only most recent D updates

are local gradients.

Waj) = Wa ) — N1V Way + Vg + Vg ;) + Vg ;)

W(i,j) — W(l,j) — ﬂ(VW(l) + ...
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The Design of Correction Term

Our DGA:

Wi =W — r/(Vw(l) + ..+ Vw(l-_D,j) + VW(i—D+1,j) + ...+ Vw(l-,j)

!

The divergence 1s bounded.
Vanilla Distributed SGD: \1,

Wiy = W.j) — n(VW(l) + ...+ Vw(i_D,j) + VW(i—D+1) + ...+ Vw(i))

Usual training consists of >10Kk 1terations, such divergence 1s small.
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DGA Guarantees the Convergence

 Assumption 1: the loss function F(w; x, y) is Lipchitz smooth

VX)) = VDI < Lllx=yl]. Vx,yeR

« Assumption 2: Bounded gradients and variances

= IVEw O < GEYw, ), B [IVEw:§) = V) [ ° < 6%, Yw, V)

| A+oc° Jd? -
The convergence rate of DGA is O( + ) (details in paper)

VIN N

A + ¢°
When D < O(Néllf 431), DGA converges as fast as original SGD which is O( ).

/IN
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Paritions FedAvg(k=5)

DGA Improves the Accuracy

FedAvg(k=10)

FedAvg(k=20)

DGA(K=5,D=20)

|.I.D

88.7

88.5

Non-|.I.D

48.2

1.0x
47 .2

1.51x

88.1

43.9

2.05x

88.6

48.0

3.16x

DGA shows negligible accuracy drop.
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DGA Improves the Accuracy

Paritions FedAvg(k=5)

FedAvg(k=10)

FedAvg(k=20)

DGA(K=5,D=20)

|.I.D 38.7

Non-I.1.D 48.2

1.0x

88.5

47.2

1.51x

88.1

43.9

88.6

2.05x

48.0

3.16x

DGA shows much better accuracy on non |.I.C

 partitions.
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DGA Improves the Accuracy

Paritions FedAvg(k=5)

|.I.D 38.7

Non-I.1.D 48.2

1.0x

FedAvg(k=10)

88.5

47.2

1.51x

FedAvg(k=20)

88.1

43.9

2.05x

DGA(K=5,D=20)

88.6

48.0

While producing higher accuracy, DGA also demonstrates faster training

speed as it fully covers communication with computation.
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DGA Improves the Accuracy

Paritions FedAvg(k=5)

l.I.D

FedAvg(k=10)

FedAvg(k=20)

DGA(K=5,D=20)

1.0x 1.91X 2.05x 3.16X
Non-|.l.D 48.2 47.2 43.9 48.0
1.1.D /6.6 /6.5 /6.2 /6.4

ImageNet 1.0x 1.43Xx 1.81x 2.55X
Non-|.l.D 55.4 52.5 48.6 54.9
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Paritions FedAvg(k=5)

l.I.D

88.7

88.5

FedAvg(k=10)

38.1

DGA Improves the Accuracy

FedAvg(k=20)

88.6

DGA(K=5,D=20)

1.0x 1.91x 2.05x 3.16X
Non-I|.I1.D 48.2 47.2 43.9 48.0
1.1.D /6.6 /6.5 /6.2 /6.4

ImageNet 1.0x 1.43x 1.81x 2.55X
Non-I|.I1.D 55.4 52.5 48.6 54.9
1.1.D 47.6 47.3 47.3 47.1

Shakespeare 1.0x 1.66X 2.91X 4.07x
Non-I|.I1.D 36.9 34.3 30.1 36.3
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Real-world Benchmark

We build a raspberry pi cluster to simulate
real-world federated learning scenarios.

* Device: 8 x Raspberry Pi 4B+ Models
* Device OS: Debian 10

* Router: Netgear R6300v2

* Router OS: OpenWRT
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Benchmark on Raspberry Pi Farms

8 8
MobilenetV2-0.25 2 Layer LSTM
o © o © shak
E E akespeare
D 4 D 4
o 2.6 S 3.0
P 2 1.5 ? 2 1.4
1.0 0.6 . l 1.0 0.7 .
o 1B — o B |
1 node 2 hodes 4 nodes 8 nodes 1 node 2 hodes 4 nodes 8 nodes
B FedAvg (K=5) B FedAvg(K=10) DGA (K=5, D=20)

When scaling the training to two devices, the normalized
throughput is only 0.6, which is even slower than single device.
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Benchmark on Raspberry Pi Farms

8 8
Mobilenet\V2-0.25 2 Layer LSTM
o © o © shak
E E akespeare
o 4 o 4
(@X (@3
0)) 51 9 0))]
° 1010 [40. 1010  g71.0
 HE =il j- -, |
1 node 2 hodes 4 nodes 8 nodes 1 node 2 hodes 4 nodes 8 nodes
B FedAvg (K=5) B FedAvg(K=10) DGA (K=5, D=20)

Even we set a larger value of K, the scalability is still less than 0.5 and not
comparable with training throughput based on in-cluster networks.

T MANIAla_



Benchmark on Raspberry Pi Farms

8 X 8 7.5
MobilenetV2-0.25 2 Layer LSTM
o © o ° Shak
0 0 akespeare
® 4 37 38 2 4 3.9
()] ()]
o 2.6 Q
Z ;1.9 @ 19 . ,22
2 1.01.01.0 0609 .. 1.01.011 1.0 '
, BT =il , -.
1 node 2 nodes 4 nodes 8 nodes 1 node 2 nodes 4 nodes 8 nodes
B FedAvg (K=5) B FedAvg(K=10) DGA (K=5, D=20)

Our proposed DGA demonstrates ideal scalability under high-latency network.
The speedup on eight-device is about 7.1, which close to what conventional
algorithms achieved inside a data center.
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Thanks for listening!

We design Delayed Gradient Averaging (DGA) that

* Delays averaging to a later iteration to tolerate high network latency
* New update formula to compensate the accuracy

We evaluate the algorithm’s

» Convergence and accuracy both theoretically and empirically.

 Training throughput under a real-world pi-cluster.
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