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Federated Learning Allows Training 
without Sharing

Challenge: Network Communication Bottleneck

Existing Methods Improves the Bandwidth, 
but not the Latency

Experimental Results
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User’s data Intelligent Edge Devices Cloud Server

Deliver model weights

Upload model updates 

Peronsal Data

● Security: Data never leaves devices thus promises security and regularization. 
● Customization: Models continually adapt to new data from the sensors. 

4G/5G

Wired ethernet or infinity band 
Bandwidth as high as 100Gb/s, 

Latency as low as 1us

WiFi or Cellular network 
Bandwidth up to 1Gb/s, 

Latency ~200ms.

• Bandwidth can be always improved by  
• Hardware upgrade 
• Gradient compression and quantization 

• Latency is hard to improve because 
• Physical limits: Shanghai to Boston, even with the speed of light, still takes 162ms. 
• Signal congestion: Urban office and home creates a lot of signal contention.
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Delay Gradient Averaging [Ours] 

1. Sample and calculate  

2. If i mod K == 0 

1. Send fresh  to other nodes 

3. If  i mod  K == D 

1. Recv stale  from other nodes 

2.  

4.
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∇w(i−D,j)

w(i,j) = w(i,j)−η(∇w(i,j) − ∇w(i−D,j) + ∇w(i−D))
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Send and recv params

1 6

W/o delay: all the local machines are blocked to wait for the 
synchronization to finish

2 3 4 5

Send and recv params

1 6

With delay: Worker keep performing local updates while the 
parameters are in transmission.

Theoretical Results
• Assumption 1: the loss function  is Lipchitz smooth 

 

• Assumption 2:  Bounded gradients and variances 

  

The convergence rate of DGA is   (details in paper) 

When ,  DGA converges as fast as original SGD which is .  

: The number of iterations; : The number of workers / clients.

F(w; x, y)
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Discussion of the Compensation Term
w(i, j) = w(i, j)−η(∇w(i, j) − ∇w(i−D, j) + ∇w(i−D))

Consider the 3rd iteration with  D = 2

w(3, j) = w(1, j) − η(∇w(1, j) + ∇w(2, j) + ∇w(3, j))

∇w(1) Replacing oldest local gradients 
with global averaged ones.

Our DGA: 
 

Vanilla Distributed SGD: 

w(i, j) = w(1, j) − η(∇w(1) + . . . + ∇w(i−D, j) + ∇w(i−D+1, j) + . . . + ∇w(i, j))

w(i, j) = w(1, j) − η(∇w(1) + . . . + ∇w(i−D, j) + ∇w(i−D+1) + . . . + ∇w(i))

w(4, j) = w(1, j) − η(∇w(1) + ∇w(2, j) + ∇w(3, j) + ∇w(4, j))

∇w(2)

Consider the 4th iteration with  D = 2

The divergence is bounded.

Table 1: Ablation studies about our gradient correction term. Without our correction term, using pure
stale gradients suffers from significant accuracy drop. The accuracy is measured on CIFAR-10.

w/o gradient correction w/ gradient correction

K=5, D=5 88.7 89.2

K=5, D=10 86.9 89.3

K=5, D=15 85.5 89.0

K=5, D=20 84.2 88.7

term as DGA. Though these studies show sub-linear convergence in theory, such a simple method
accumulates the staleness over iterations and hurts model performance especially when the delay
steps is large as shown in Table. 1. Therefore, they cannot handle high latency network.

To summarize, we have introduced the delayed gradient averaging, which delays the averaging
operation thus allows local updates to be pipelined with communication. We then design a correction
term to handle delayed gradients and compensate the staleness. We next conduct experiments showing
that DGA speeds up FedAvg without losing accuracy.

3 Experiment

3.1 Accuracy Evaluation

We evaluate the effectiveness of DGA on diverse tasks: Image classification on CIFAR-10 [19]
and ImageNet [20], next word prediction on Shakespheare [41]. We implement DGA in PyTorch
framework [30] and choose Horovod [40] as the distributed training backend. The task-specific
details are described below.

On CIFAR-10 [19], we train a MobilenetV2-0.25 [37] using 64 workers and each equips with single
V100 GPU. The training epochs is 200 and the batch size 64 per worker. The learning rate ⌘ is
initially set to NUM_GPUs ⇥ 0.0125 and momentum � is 0.9. The learning rate linearly increases
during the first 5 epochs, following the warm-up strategy in [8], and then decays with cosine anneal
schedule.

On ImageNet [7], we evaluate ResNet-50 [11] with 64 worker nodes. The total mini-batch size is
2048, and we train the model for 150 epochs. We apply the warm-up strategy in [8] to schedule
the learning rate and only random crop and flip are used as data augmentations in the training. The
learning rate adopts the same scaling strategy as CIFAR’s.

On Shakespeare, we adopt the 2-layer LSTM language model architecture with 1500 hidden units per
layer [32] and follow the preprocessing in Leaf [4]. We set the learning rate to 20 and clip gradients
with a norm larger than 0.25 to avoid gradient explosion. The model is trained with 40 epochs while
the first epoch is used for warm-up.

Table 2: Comparison of FedAvg and our DGA’s accuracy on 3 datasets with both i.i.d and non-
i.i.d partitions. The speedup is measured on latency with 1s latency. Not only DGA demonstrates
consistent training speedup, but also DGA maintains the accuracy, on both i.i.d and non-i.i.d partition.

Datasets Partition

FedAvg

(K=5)

FedAvg

(K=10)

FedAvg

(K=20)

DGA

(K=5, D=20)

Acc Speedup Acc Speedup Acc Speedup Acc Speedup

CIFAR i.i.d 88.7 1⇥ 88.5 1.51⇥ 88.1 2.05⇥ 88.6 3.16⇥non-i.i.d 48.2 47.2 43.9 48.0

ImageNet i.i.d 76.6 1⇥ 76.5 1.43⇥ 76.2 1.81⇥ 76.4 2.55⇥non-i.i.d 55.4 52.5 48.6 54.9

Shakespeare i.i.d 47.6 1⇥ 47.3 1.66⇥ 47.4 2.51⇥ 47.1 4.07⇥non-i.i.d 36.9 34.3 30.1 36.3

8DGA demonstrates consistent training speedup, but also maintains the 
accuracy, on both i.i.d and non-i.i.d partition. 
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On a realistic  federated learning scenarios, a raspberry-pi cluster consists of 16 
devices, DGA is robust against network stragglers and shows improvements.
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