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Communication Latency in Federated Learning
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Federated Learning Allows Training
without Sharing
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Intelligent Edge Devices

Upload model updates

Deliver model weights

Cloud Server

User’s data

Security: Data never leaves devices thus promises security and regularization.
Customization: Models continually adapt to new data from the sensors.

Challenge: Network Communication Bottleneck
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WiFi or Cellular network
Bandwidth up to 1Gb/s,
Latency ~200ms.

Wired ethernet or infinity band
Bandwidth as high as 100Gb/s,
Latency as low as 1us

Existing Methods Improves the Bandwidth,
but not the Latency

« Bandwidth can be always improved by
* Hardware upgrade
« Gradient compression and quantization

« Latency is hard to improve because
* Physical limits: Shanghai to Boston, even with the speed of light, still takes 162ms.
» Signal congestion: Urban office and home creates a lot of signal contention.
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Delay Gradient Averaging [Ours] Theoretical Results

- Assumption 1: the loss function F(w; x, y) is Lipchitz smooth

1.  Sample and calculate Vw,. .
P (i.) Vi - VEODII <Lllx—yl|. VxyeR?

2. IfimodK ==

Send fresh Vw,; » to other nodes

« Assumption 2: Bounded gradients and variances

B Ec [ [VEw: )| 1P < G2 Yw, V), B [VEw:8) = VW) | < 0% YW V).

3. If imod K== Delay D steps N
The convergence rate of DGA is O( + ) (details in paper)
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2. VW(Z _p) = 2 VW(Z—D,]) When D < O(N+*J~%), DGA converges as fast as original SGD which is O( — ).
] 1 v

4 Wi iy = W(i,j)_ﬂ( VW(i,j) — VW(i—D,j) + VW(i—D)) N: The number of iterations; J: The number of workers / clients.

Experimental Results

Send and recv params

FedAvg FedAvg FedAvg DGA
Datasets Partition (K=5) (K=10) (K=20) (K=5, D=20)

Wi/o delay: all the local machines are blocked to wait for the Acc  Speedup Acc  Speedup Acc  Speedup Acc  Speedup

synchronization to finish i.1.d 88.7 88.5 88.1 88.6
CIFAR — on-iid 482 1% g0 1D y39 205 ygg 316X

Send and recv params 1.1.d 76.6 76.5 76.2 76.4
ImageNet  poniid 554 X sps M 456 IBIX 54 299X

1.1.d 47.6 47.3 47.4 47.1
Shakespeare non-iid  36.9 1% 343 1.66 x 301 2.51x 363 4.07 x

DGA demonstrates consistent training speedup, but also maintains the

With delay: Worker keep performing local updates while the accuracy, on both i.i.d and non-i.i.d partition.

parameters are in transmission.
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Consider the 3rd iteration with D = 2 0 ] 5 4 5 16
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Vwq, Replacing oldest local gradients Language 18.5
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Consider the 4th iteration with D = 2 with global averaged ones. 1 =N § 78
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The divergence is bounded. On a realistic federated learning scenarios, a raspberry-pi cluster consists of 16
Vanilla Distributed SGD: \’ devices, DGA is robust against network stragglers and shows improvements.
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